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1 Introduction

A classical social choice problem is the following. A society N of agents has to choose an

outcome from a given set X: Since agents may have di¤erent preferences over X, and it

is desirable that the chosen outcome be perceived as a compromise among the potentially

di¤erent preferences, agents have to be asked about them. A social choice function (a

rule) collects individual preferences and selects in a systematic way an outcome, taking

into account the revealed preference pro�le (the list of individual preferences, one for every

agent).

This classical approach assumes that the composition of the society is independent of the

chosen outcome. There are many situations for which this assumption is not appropriate

because the composition of the society may depend on the chosen outcome. For instance,

membership of a political party may depend on the positions that the party takes on issues

like the death penalty, abortion, or the possibility of allowing the independence of a region

of the country. A professor in a department may consider to look for a position in another

university if he considers that the recruitment of the department has not being satisfactory

to his standards. Hence, to be able to deal with such situations the classical social choice

model has to be modi�ed to include explicitly the possibility that members may leave the

society as the consequence of the chosen outcome.

There is a literature that has already considered explicitly the dependence of the �nal

society on its choices in speci�c settings. For instance, Barberà, Mashler and Shalev (2001)

consider a dynamic setting in which the sets of founders and candidates are �xed, and the

society holds elections for a �xed number of periods using voting by quota 1 (one vote is

su¢ cient for admission, and voters can support as many candidates as they wish). They

show that very interesting strategic behavior may emerge in equilibrium, even when the

used voting method is very simple. Giving the right to vote to elected candidates and not

allowing non elected candidates to vote at all, are two extreme ways of transferring in�uence

among agents. Barberà and Perea (2002) study a similar model in which the transfer of

in�uence to new members or non elected candidates behaves in a continuous way instead of

being binary. They study the (essentially) unique subgame perfect equilibrium of a model

with these features and identify its simple dynamic structure. Berga, Bergantiños, Massó

and Neme (2004) study also the problem of a society choosing a subset of new members,

from a �nite set of candidates, using voting by committees as in Barberà, Sonnenschein and
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Zhou (1991). They consider explicitly the possibility that initial members of the society

(founders) may want to exit, if they do not like the resulting new society. They show that,

if founders have separable (or additive) preferences, the unique strategy-proof, stable and

onto rule is the one where candidates are chosen unanimously and no founder exits. Berga,

Bergantiños, Massó and Neme (2006) study equilibria of a �nite extensive form game in

which, after knowing the chosen alternative, members may reconsider their membership

by either staying or exiting. In turn, and as a consequence of the exit of some of its

members, other members might now �nd undesirable to belong to the society as well. For

general exit procedures they analyze the exit behavior of members after knowing the chosen

alternative. All these papers mentioned above study speci�c models in terms of the voting

methods under which members choose the social outcome and the timing under which

members reconsider their membership.

In most part of this paper we look at the general setting without being speci�c about

the two issues. We do that by considering that the set of alternatives are all pairs formed

by a subset of the original society (an element in 2N ; the subset of agents that will remain

in the society) and an outcome in X. Then, we assume that agents�preferences are de�ned

over the set 2N �X of alternatives and satisfy two natural requirements. First, each agent

has strict preferences between any two alternatives, provided the agent belongs to the two

corresponding societies. Second, each agent is indi¤erent between two alternatives, provided

the agent is not a member of any of the two corresponding societies; namely, agents do not

care about the outcome chosen by societies they do not belong to.

We consider rules that operate on this restricted domain of pro�les by selecting, for

each pro�le, an alternative (a �nal society and an outcome). An agent that understands

the e¤ect of the revealed preference on the selected alternative faces an strategic problem:

how to select the best revealed preference. Depending on the rule under consideration, the

agent may realize that the solution to this problem is ambiguous because it may depend on

the agent�s expectations that he has about the revealed preferences of the other agents, and

in turn he may also realize that to formulate hypothesis about those revealed preferences

require hypothesis about the others�expectations, and so on. Strategy-proof rules make

all these considerations unnecessary since truthtelling is a weakly dominant strategy of

the direct revelation game form at each pro�le; namely, each agent�s decision problem is

independent of the preferences revealed by the other agents. Our �rst result, Theorem 1,

characterizes the class of all strategy-proof, unanimous and nonbossy rules as the family of
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all serial dictator rules. A rule is unanimous if it always selects an alternative belonging to

the set of common best alternatives, whenever this set is nonempty. A rule is nonbossy if

it is invariant with respect to the change of preferences of an agent who is not a member

of the two �nal societies. A serial dictator rule, relative to an ordering of the agents, gives

to the �rst agent the power to select his best alternative, and only if this agent has many

indi¤erent alternatives at the top of his preference then, the second agent in the order has

the power to select his best alternative among those declared as being indi¤erent by the

�rst agent, and proceeds similarly following the ordering of the agents.

For applications where the pro�le is common knowledge (and hence, the revelation

of agents�preferences is not an strategic issue) we focus on the consistency of rules (see

Thomson (1994, 2007) and Bergantiños, Massó and Neme (2015) for the study of consistent

rules in other social choice settings). A rule is consistent if the following property holds.

Apply the rule to a given pro�le and consider the new problem where the new society is

formed by the chosen subset of agents at the original pro�le. A consistent rule chooses at

the subpro�le of preferences of the agents that remain members of the society the same

alternative (the same subset of agents and the same outcome). Thus, a consistent rule does

not require to reapply the rule after an alternative has been chosen. We adapt well-known

voting methods to our setting, with the goal of making them internally stable (all agents

that are chosen to be members of the �nal society want to stay). We show that plurality

voting and the Borda method do not satisfy consistency. However, approval voting not only

satis�es consistency but it also satis�es other desirable properties. Finally, we show that

the Condorcet winner is consistent at those pro�les where an alternative beats all other

alternatives by majority voting.

The paper is organized as follows. In Section 2 we describe the model. Section 3

contains the de�nitions of the properties of rules that we will be interested in. In Section

4 we focus on strategy-proof rules and state, as Theorem 1, the characterization of the

class of all strategy-proof, unanimous and nonbossy rules as the family of all serial dictator

rules. Section 5 contains the analysis of well-known rules from the point of view of their

consistency and internal stability properties. An Appendix at the end of the paper contains

the proof of Theorem 1.
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2 Preliminaries

Let N = f1; :::; ng be the set of agents, where n � 2; and let X be the set of possible

outcomes. We are interested in situations where some agents may not be part of the �nal

society, perhaps as the consequence of the chosen outcome. To model such situations, let

A = 2N�X be the set of (social and �nal) alternatives and assume that each agent i 2 N has
preferences over the set of possible alternatives A. Let Ri denote agent i�s (weak) preference

over A; where for any pair of alternatives (S; x); (T; y) 2 A; (S; x)Ri(T; y) means that agent
i considers alternative (S; x) to be at least as good as alternative (T; y): Let Pi and Ii
denote the strict and indi¤erence relations induced by Ri over A, respectively; namely, for

any pair of alternatives (S; x); (T; y) 2 A; (S; x)Pi(T; y) if and only if (S; x)Ri(T; y) and :
(T; y)Ri(S; x); and (S; x)Ii(T; y) if and only if (S; x)Ri(T; y) and (T; y)Ri(S; x):We assume

that agents do not care about the outcome chosen by a society that they do not belong to

and are not indi¤erent between pairs of alternatives for which they are members of at least

one of the two societies. Namely, we assume that agent i�s preferences Ri over A satisfy

the following two properties: for all x; y 2 X and S; T 2 2N ;

(P.1) if i =2 S [ T then (S; x) Ii (T; y) ; and

(P.2) if i 2 S [ T and (S; x) 6= (T; y) then either (S; x)Pi (T; y) or (T; y)Pi (S; x) :

Let Ri be the set of preferences of agent i 2 N over A satisfying (P.1) and (P.2), and let

R = �i2NRi be the set of (preference) pro�les. To emphasize agent i�s preference or the

preferences of agents in S � N at pro�le R we often write it as (Ri; R�i) or as (RS; R�S):

We denote by [?]i = f(S; y) 2 A j (S; y) Ii (?; x) for some x 2 Xg the subset of alter-
natives that agent i is indi¤erent to any alternative for which i is not a member of. By

(P.1), [?]i is the indi¤erence class generated by the empty society. With an abuse of no-
tation we often treat, when listing a preference ordering, the indi¤erence class [?]i as if it
were an alternative; for instance, given Ri and (S; x) we write (S; x)Ri[?]i to represent that
(S; x)Ri(T; y) for all (T; y) 2 [?]i : Given a pro�le R = (Ri)i2N 2 R and a subset of agents

S � N we denote by RjS the restriction of R to 2S. Namely, given i 2 T \ T 0; T [ T 0 � S
and x; y 2 X; (T; x)

�
RjS
�
i
(T 0; y) if and only if (T; x)Ri (T 0; y) :

Given a subset of alternatives A0 � A and a preference Ri, the choice of agent i in A0

at Ri is the family of best subsets of A0 according to Ri; namely,

C (A0; Ri) = f(S; x) 2 A0 j (S; x)Ri (T; y) for all (T; y) 2 A0g :

5



We de�ne three di¤erent sets that we will use in the sequel, all related to a preference

Ri of agent i. The top of Ri; denoted by � (Ri) ; is the set of all best alternatives according

to Ri; namely,

� (Ri) = f(S; x) 2 A j (S; x)Ri (T; y) for all (T; y) 2 Ag :

Of course, C(A;Ri) = �(Ri): The lower counter set of Ri at (S; x) ; denoted by L ((S; x) ; Ri) ;

is the set of alternatives that are at least as bad as alternative (S; x) according toRi; namely,

L ((S; x) ; Ri) = f(T; y) 2 A j (S; x)Ri (T; y)g :

The upper counter set of Ri at (S; x) ; denoted by U ((S; x) ; Ri) ; is the set of alternatives

that are at least as good as alternative (S; x) according to Ri; namely,

U ((S; x) ; Ri) = f(T; y) 2 A j (T; y)Ri (S; x)g :

A rule is a social choice function f : R ! A selecting, for each pro�le R 2 R, an
alternative f(R) 2 A: To be explicit about the two components of the alternative chosen
by f atR; we will often write f (R) as (fN (R) ; fX (R)), where fN (R) 2 2N and fX (R) 2 X:
To de�ne anonymous and neutral rules let � : N ! N and � : X ! X be permutations

(one-to-one mappings) of the set of agents and the set of outcomes, respectively. Given

i 2 N and x 2 X; �(i) is the agent assigned to i after applying the permutation � to N ,
and �(x) is the outcome assigned to x after applying the permutation � to X: The set of all

permutations � : N ! N will be denoted by � and the set of all permutations � : X ! X

will be denoted by �: For � 2 � and 1 � k � n; we write �k to denote the agent ��1(k):
For � 2 � and x 2 X; we write �x to denote the outcome ��1(x): Let S 2 2N be a subset
of agents and � be a permutation of N . Denote by �(S) the subset of agents associated

to S by �; namely, �(S) = fi 2 N j �(j) = i for some j 2 Sg: Let Y � X be a subset of

outcomes and � be a permutation of X: Denote by �(Y ) the subset of outcomes associated

to Y by �; namely, �(Y ) = fx 2 X j �(y) = x for some y 2 Y g: Let R 2 R be a pro�le

and � 2 � be a permutation of the set of agents N . Denote by R� the new pro�le where
for all i 2 N; agent �(i) has the preference Ri after replacing in the ordering Ri each pair
(S; x) by (�(S); x): Similarly, let R 2 R be a pro�le and � 2 � be a permutation of the
set of outcomes X: Denote by R� the new pro�le where for all i 2 N the preference R�i is

obtained from Ri after replacing each pair (S; x) by (S; �(x)):

Finally, to de�ne a consistent rule we will have to specify how a given rule can be applied

to a subpro�le. One way of doing so it is to see a rule f : R! A as it were a family of rules.
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Given a nonempty subset S 2 2Nnf?g; denote by RS the set of subpro�les RjS = (Rji)i2S
where each Rji, i 2 S, is de�ned over pairs in 2S�X and it is obtained by restricting Ri only

to alternatives in 2S �X: Thus, a rule f can be identi�ed with the collection ffSgS22Nnf?g
of rules where for each S 2 2Nnf?g; fS : RS ! 2S �X: If no confusion can arise, we often
omit the superscript S and write f(RjS):

3 Properties of rules

In this section we present several properties that a rule may satisfy. The �rst three impose

conditions on f at each pro�le.

A rule f : R! A is e¢ cient if it always selects a Pareto optimal allocation.

Efficiency For eachR 2 R there is no (S; x) 2 A with the property that (S; x)Rif(R)
for all i 2 N and (S; x)Pjf(R) for some j 2 N:

A rule f : R! A is unanimous if it selects an alternative in the intersection of all tops,

whenever this intersection is nonempty.

Unanimity For all R 2 R such that
T
i2N

� (Ri) 6= ?, f (R) 2
T
i2N

� (Ri) :

The next property is related to the stability of a rule f : R! A; and captures the idea

that agents are able to getting out of the society at their free will. Internal stability says

that no agent belonging to the �nal society would prefer to leave it.

Internal stability For all R 2 R and all i 2 fN (R) ; f (R)Pi [?]i.

The next seven properties impose conditions on a rule by comparing the alternatives

chosen by the rule at two di¤erent pro�les. A rule is strategy-proof if it is always in the best

interest of agents to reveal their preferences truthfully; namely, truth-telling is a weakly

dominant strategy in the direct revelation game induced by the rule.

Strategy-proofness For allR 2 R; all i 2 N and allR0i 2 Ri; f (Ri; R�i)Rif (R
0
i; R�i) :

1

A rule is monotonic if the chosen alternative at a pro�le improves in the ordering of the

preference of an agent, then the rule selects the same alternative in the new pro�le.

Monotonicity For all R and all R0i 2 Ri such that L (f (R) ; Ri) � L (f (R) ; R0i),

f (R) = f (R0i; R�i) :

1If otherwise, i.e. f(R0i; R�i)Pif(Ri; R�i); we will say that i manipulates f at pro�le (Ri; R�i) via R
0
i:

7



Since the set of indi¤erent alternatives for an agent coincides in all preferences, monotonic-

ity could be reformulated in an equivalent way by stating that for all R 2 R and all R0i 2 Ri

such that U (f (R) ; Ri) � U (f (R) ; R0i), f (R0i; R�i) = f (R) :

A rule is nonbossy if an agent that is not a member of the chosen society at a pro-

�le changes his preferences and remains a nonmember then, the rule chooses the same

alternative at the two pro�les.

Nonbossiness For all R 2 R, all i 2 N and all R0i 2 Ri such that i =2 fN (R) [
fN (R

0
i; R�i), f (R

0
i; R�i) = f (R) :

A rule is anonymous if is invariant with respect to permutations of the agents; i.e., the

names of the agents are not relevant to select the alternative.

Anonymity For all R 2 R and all permutation � 2 � of the set of agents, fN (R�) =
�(fN(R)) and fX(R�) = fX (R) :

In our setting anonymity and e¢ ciency are incompatible (no rule satis�es both prop-

erties). To see that consider the case where N = f1; 2g, X = fxg ; and R1 and R2
are as follows: (f1g ; x)P1 [?]1 P1 (N; x) and (f2g ; x)P2 [?]2 P2 (N; x) : If f is e¢ cient,
f (R) 2 f(f1g ; x) ; (f2g ; x)g : Suppose f(R) = (f1g ; x) ; i.e., fN(R) = f1g (the other
case proceeds similarly, and hence we omit it). Consider the permutation � where �(1) = 2

and �(2) = 1: Since �(f1g) = f2g; R� = (R2; R1) and the sets of e¢ cient alternatives

at R and at R� coincide, fN(R�) = f1g 6= f2g = �(f1g) = �(fN(R)). Hence, f is not

anonymous.

A rule is consistent if the following requirement holds. Apply the rule to a given pro�le

and consider the subset of agents that are members of the chosen society. Construct the

new subpro�le of preferences restricted to this new set of chosen agents. Then, the rule does

not require to modify the chosen alternative because when applied to the new subpro�le

the new alternative coincides with the alternative chosen at the original pro�le.

Consistency For all R 2 R; f (R) = f
�
RjfN (R)

�
.

A rule is neutral if the name of the outcomes do not play any role in selecting the social

alternative.

Neutrality For allR 2 R and all permutation � 2 � ofX; f(R�) = (fN(R); �(fX(R)):

A rule satis�es the property of participation if all agents prefer to be involved in the

election of the social alternative rather than to exclude themselves by not submitting their
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preferences; namely, participation guarantees that the procedure to choose the social alter-

native is individually rational.

Participation For all R 2 R and all i 2 N , f (R)Ri[?]i:

4 Strategy-proof rules

In this section we want to characterize the class of all strategy-proof, unanimous and non-

bossy rules.2 They will be adaptations of the serial dictator rules to our setting. A serial

dictator rule induced by � 2 � and x 2 X, denoted by f�;x; proceeds as follows. Fix

a pro�le R 2 R and look for the best alternative (S1; x1) of agent �1, the �rst in the

ordering induced by �: If �1 2 S1; set f�;x(R) = (S1; x1). Otherwise, look for the best

alternative (S2; x2) of agent �2; the second in the ordering induced by �; with the property

that �1 =2 S2: If �2 2 S2; set f�;x(R) = (S2; x2). Otherwise, look for the best alternative

(S3; x3) of agent �3; the third in the ordering induced by �; provided that �1; �2 =2 S3; and
so on. At the end, look for the best alternative (Sn; xn) of agent �n; the last in the ordering

induced by �; with the property that for each i 2 f1; :::; n� 1g ; �i =2 Sn: If �n 2 Sn; set
f�;x(R) = (Sn; xn). Otherwise, and since no agent wants to stay in the society whatever

element of X is selected, set f�;x(R) = (?; x) : So, x plays the role of the residual outcome
only when no agent wants to stay in the society under any circumstance.

We now de�ne serial sequential rule formally. Fix � 2 � and x 2 X: Let R 2 R be a

pro�le. De�ne f�;x (R) recursively, as follows.

Stage 1. Let A1 = A: Consider two cases:

1. jC (A1; R�1)j = 1: Then, C (A1; R�1) = � (R�1) : Set (S1; x1) = C (A1; R�1) and ob-

serve that �1 2 S1: De�ne
f�;x (R) = (S1; x1):

2. jC (A1; R�1)j > 1: Then, C (A1; R�1) = f(S; x0) 2 A j �1 =2 S and x0 2 Xg : Go to
Stage 2.

We now de�ne Stage k (1 < k < n) ; assuming that the stage k � 1 has been reached
and Ak�1 was de�ned on it.

2Observe that the preferences we are considering satisfy (P.1) and hence, rules do not operate on the

universal domain of preferences over 2N �X: Thus, the Gibbard-Satterthwaite Theorem can not be applied
(see Gibbard (1973) and Satterthwaite (1975)).

9



Stage k. Let Ak = C(Ak�1; R�k�1): Consider two cases.

1. jC (Ak; R�k)j = 1: Then, C (Ak; R�k) = � (R�k) : Set (Sk; xk) = C (Ak; R�k) and

observe that �k 2 Sk: De�ne

f�;x (R) = (Sk; xk) :

2. jC (Ak; R�k)j > 1: Then, C (Ak; R�k) = f(S; x0) 2 A j �i =2 S for all i � k and x0 2 Xg :
Go to Stage k + 1.

We now de�ne Stage n; the last stage of the procedure, assuming that the stage n� 1
has been reached and An�1 was de�ned on it.

Stage n. Let An = C(An�1; R�n�1): Consider two cases.

1. jC (An; R�n)j = 1: Then, C (An; R�n) = � (R�n) : Set (Sn; xn) = C (An; R�n) and

observe that �n 2 Sn: De�ne

f�;x (R) = (Sn; xn) :

2. jC (An; R�n)j > 1: Then, C (An; R�n) = f(?; x0) 2 A j x0 2 Xg : De�ne

f�;x (R) = (?; x) :

Example 1 below illustrates this procedure.

Example 1 Let N = f1; 2g be the set of agents, X = fa; b; cg be the set of outcomes
and consider the identity permutation � = (�1; �2) = (1; 2) and x = a: We apply the serial

dictator rule f (1;2);a to the following preferences, where we give the list of the alternatives in

decreasing order from the top and we only order the alternatives needed to compute f (1;2);a

at some pro�les.

R1 R01 R2 R02

(N; b) f(S; y) 2 A j 1 =2 S; y 2 Ag (N; a) (N; a)

(N; b) (N; b)

(f2g ; c) f(S; y) 2 A j 2 =2 S; y 2 Ag

:
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Then,

f (1;2);a (R1; R2) = (N; b) ;

f (1;2);a (R1; R
0
2) = (N; b)

f (1;2);a (R01; R2) = (f2g ; c) ; and

f (1;2);a (R01; R
0
2) = (?; a) :

�
We are now ready to state as Theorem 1 the characterization of the class of all strategy-

proof, unanimous and nonbossy rules as the family of all serial dictator rules. The Appendix

at the end of the paper contains the proof of Theorem 1 and three examples of rules

indicating the independence of the three properties used in the characterization.

Theorem 1 Assume jXj � 3: A rule f : R ! A is strategy-proof, unanimous and non-

bossy if and only if f is a serial dictator rule for some permutation � 2 � and alternative
x 2 X:

5 Consistent and internally stable rules

By Theorem 1, if we insist on strategy-proofness together with the two additional weak

requirements of unanimity and nonbossiness, we have to use a serial dictatorial rule. In this

section, we consider situations where the strategic manipulation in the preference revelation

game is not an issue and will look for rules satisfying two meaningful properties in our

setting, assuming agents report truthfully their preferences. Internal stability (no agent,

member of the chosen society, wants to leave it) is an specially interesting property because

in most societies, agents are not obliged to stay in the society if they want to leave it. The

second property is consistency. Assume that the rule f has selected the pair (S; x) at R 2 R.
Thus, agents in S might want to reconsider again the alternative (S; x). Consistency says

that if f is applied to RjS; the pair (S; x) would be also selected. Hence, members of the

new society S do not need to reconsider the choice (S; x) of the former society N:

To look for consistent rules satisfying also internal stability we ask whether three of the

most prominent rules in classical social choice satisfy them. Recall that in the classical

setting the goal is to select an outcome, from a given set X, taking into account the strict

preferences of agents over X: The rules we consider are:
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1. Approval voting. Each agent i 2 N votes for a subset Xi of X: For each outcome x 2
X, compute the number of received votes; namely, jfi 2 N : x 2 Xigj : The outcome
with more votes is selected. A tie-breaking rule should be applied whenever several

outcomes obtain the largest number of votes.

2. Plurality voting. Each agent i 2 N votes for an outcome xi 2 X: The outcome

with more votes is selected. A tie-breaking rule should be applied whenever several

outcomes obtain the largest number of votes.

3. Borda method. Each agent i 2 N ranks all outcomes. Assign a preestablished number

of points to each outcome depending on its position in the order. For each outcome,

compute the sum, over all agents, of the points obtained by such outcome. Select the

outcome with more points. A tie-breaking rule should be applied whenever several

outcomes obtain the largest number of points.

We adapt the three voting methods to our setting, where the set of alternatives is

2N �X: In addition, we will have to deal with the indi¤erences arising from property (P.1)
of preference relations.

1. Approval voting. Each agent i 2 N votes for all pairs (S; x) such that (S; x)Pi [?]i :

2. Plurality voting. Each agent i 2 N votes for his top alternative, � (Ri). If � (Ri) =

[?]i, assume that i votes for all pairs (S; x) 2 [?]i :

3. Borda method. For each agent i 2 N , consider [?]i as a single alternative in i�rank.
For each pair (S; x) 2 A and each i 2 NnS, assign to the pair (S; x) the score obtained
by [?]i :

Example 2 below shows that none of these extensions satisfy internal stability.

Example 2 Let R 2 R and x 2 X be such that for all i 2 Nn f1g ; � (Ri) = (N; x),

� (R1) = [?]1 and for each (S; y) with 1 2 S; (N; x)R1 (S; y). Then, the three adapted
voting methods choose (N; x) at R: Nevertheless, (N; x) is not internal stable because

agent 1 prefers to leave the society. �

Since we are interested in identifying rules satisfying internal stability, we modify the

previous methods by considering only pairs (S; x) that are internally stable for each i 2 S
according to Ri; namely, (S; x)Pi [?]i for each i 2 S: In approval voting agents vote only for
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pairs that are internally stable. In plurality voting each agent votes for his best internally

stable pair. In a Borda method we consider only the rank, given by the preference, among

the internally stable pairs. With these modi�cations the three methods satisfy internal

stability by de�nition. Denote by fAV ; fP and fB Approval voting, the Plurality voting,

and the Borda method, respectively.

Our �rst result is negative: plurality voting and Borda method do not satisfy consistency.

To see that, consider Example 3 below.

Example 3 LetN = f1; 2; 3; 4; 5; 6g andX = fy1; y2; y3; y4; y5g and consider the following
pro�le R 2 R: For each i 2 N; (S; x)Pi [?]i whenever i 2 S (namely, all pairs are internally
stable). In addition, R is one among all those pro�les satisfying the following properties,

where the �rst column indicates the rank of each of the six preference relations.

R1 R2 R3 R4 R5 R6

First (N; y1) (N; y2) (N; y3) (Nn f6g ; y4) (Nn f6g ; y4) (N; y5)

Second (Nn f6g ; y1) (Nn f6g ; y1) (Nn f6g ; y1) (Nn f1g ; y4) (Nn f1g ; y4)
Third (Nn f6g ; y4) (Nn f6g ; y4) (Nn f6g ; y4) (Nn f2g ; y4) (Nn f2g ; y4)
Fourth (Nn f3g ; y4) (Nn f3g ; y4)
Fifth (Nn f6g ; y1) (Nn f6g ; y1)

:

First, plurality voting does not satisfy consistency since fP (R) = (Nn f6g ; y4) but at
the same time fP

�
RjNnf6g

�
= (Nn f6g ; y1). Consider now the classical de�nition of

the Borda method where the scores from the worst to the best alternative are given by

0; 1; 2; ::::; k � 2; k � 1; where k is the number of available alternatives. It is possible to
select a pro�le R0 satisfying the above rankings in such a way that fB (R0) = (Nn f6g ; y4) :
Besides, fB

�
R0jNnf6g

�
= (Nn f6g ; y1) : Hence, this Borda method does not satisfy consis-

tency. �

Fortunately, approval voting satis�es not only consistency but also other desirable prop-

erties. Before stating this result formally we propose a tie-breaking rule, to be used whenever

more than one alternative obtains the highest number of votes. Let � be a monotonic order

over the family of subsets of 2N : Namely, given S; T 2 2N such that S � T , T�S: Observe
that N�S for all S 6= N:
Fix a monotonic order � over 2N : Denote by fAV;� the approval voting that uses �

to break the ties. Formally, let A0 = f(Sk; xk)gKk=1 be the set of alternatives that have
received the largest number of votes according to approval voting at pro�le R. First select
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the society S 2 fS1; :::; SKg ranked higher by � and consider the subset of alternatives
f(Sk0 ; xk0) 2 A0 j Sk0 = Sg : Select now agent i 2 S ranked higher by � (as a singleton set)
and choose �nally at R the alternative that is most preferred by i among those in the family

f(Sk0 ; xk0) 2 A0 j Sk0 = Sg :
Proposition 1 below states that any Approval voting fAV;� satis�es internal stability and

consistency, together with other desirable properties.

Proposition 1 Let � be a monotonic order over 2N : Then, the Approval voting fAV;�

satis�es internal stability, consistency, e¢ ciency, neutrality and participation. Moreover, in

the subdomain of pro�les where no tie-breaking rule is needed, fA;� also satis�es anonymity.

Proof of Proposition 1 Observe that if (S; x) is approved by agent i 2 N; then i 2 S:
This fact will be repeatedly used in the proof to show that fAV;� satis�es the properties,

which we consider separately.

� Internal stability. By de�nition, fA;� satis�es internal stability.

� Consistency. Let R 2 R be an arbitrary pro�le and let (S; x) 2 A be such that

S � fAV;�N (R) : The set of agents approving (S; x) at R coincides with the set of agents

approving (S; x) at RjfA;�N (R): Hence, it follows that f
AV;�(RjfA;�N (R)) = f

AV;� (R) : Thus,

fAV;� satis�es consistency.

� E¢ ciency. Suppose otherwise; namely, there exist R 2 R and (S; x) 2 A such that
(S; x)Rif

AV;� (R) for all i 2 N and (S; x) 6= fAV;� (R) : Let i 2 fAV;�N (R) : Since fAV;�

satis�es internal stability, fAV;� (R)Pi [?]i : Hence, i 2 S and (S; x)PifAV;� (R). We
consider two cases. First, assume fAV;�N (R)  S: Since for each i 2 SnfAV;�N (R) ;

fAV;� (R) = [?]i and (S; x)RifAV;� (R) it follows that (S; x)Pi [?]i : Thus, all agents
in S approve (S; x), which contradicts the de�nition of fAV;� (R) : Second, assume

fAV;�N (R) = S: Thus, fA;V � (R) = (S; y) with y 6= x and all agents in S approve both,
(S; x) and (S; y) : Hence, the tie-breaking rule � has been used to select fAV;� (R) :

Thus, there exists i 2 S such that fAV;� (R)Pi (S; x) which is a contradiction.

� Neutrality. Let R 2 R be a pro�le and � a permutation of X: Observe that for

any alternative (S; x) the number of agents approving (S; x) at R coincides with the

number of agents approving (S; �x) at R�: We consider two cases. First, assume it

is not necessary to apply � to select fAV;� (R) : Namely, fAV;� (R) has been approved

at R by more agents that any other alternative (S; x) : Thus, (fAV;�N (R) ; �fAV;�X (R))
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has been approved at R� by more agents that any other alternative (S; x) : Hence,

fAV;� (R�) = (fAV;�N (R) ; �fAV;�X (R)): Second, assume it is necessary to apply � to select

fAV;� (R) : Let f(Sk; xk)gKk=1 be the set of alternatives receiving the largest number of
votes at R. Thus, f(Sk; �xk)g

K
k=1 is the set of alternatives receiving the largest number

of votes at R�. Hence, fAV;�N (R) = fAV;�N (R�) : Now, let i 2 fAV;�N (R) be the agent

with the highest ranking according to � (as a singleton set) and let i0 2 fAV;�N (R�)

be the agent with the highest ranking according to �. Obviously, i0 = i: Thus,

fAV;�X (R�) = �fAV;�X (R):

� Participation. We prove that fAV;� satis�es participation by showing that any rule
satisfying internal stability also satis�es participation. Let R 2 R be a pro�le and i 2
N: Since fAV;�Nnfig

�
RjNnfig

�
� Nn fig ; fAV;�Nnfig

�
RjNnfig

�
= [?]i : We distinguish between

two cases. First, i 2 fAV;�N (R) : Since fAV;� satis�es internal stability, fAV;� (R)Pi [?]i :
Second, i =2 fAV;�N (R) : Thus, fAV;� (R) = [?]i :

� Anonymity in the pro�les where no tie-breaking rule is needed. Assume that to select
the alternative at pro�le R the tie-breaking � is not used. Then, fAV;� (R) has been

approved at R by more agents than any other alternative (S; x) : Hence, the number of

agents approving (S; x) at R coincides with the number of agents approving (�(S); x)

at R�. Thus, (�(fAV;�N (R)); fAV;�X (R)) has been approved at R� by more agents that

any other pair (S; x) : Hence, fAV;� (R�) =
�
�(fAV;� (R)); fAV;�X (R)

�
; which means

that fAV;� satis�es anonymity at pro�le R: �

We end this section by applying the Condorcet winner to our setting. First, we recall

the de�nition of the Condorcet winner at a pro�le (over the set of outcomes) in the classical

setting. Fix a pro�le over X and x; y 2 X: We say that x beats y if the number of agents
preferring x to y is larger that the number of agents preferring y to x: We say that x is

a Condorcet winner (at a pro�le over X) if there is no y such that y beats x: It could be

the case that no Condorcet winners exists or that there are several Condorcet winners (at

a pro�le over X). Thus, the Condorcet winner is not a rule according to our de�nition.

We adapt the notion of a Condorcet winner to our setting as we have already did for the

previous three rules. Fix a pro�le R 2 R and two di¤erent alternatives (S; x) and (T; y) :

All agents in the set S[T strictly prefer one alternative to the other one while all agents in
the set Nn (S [ T ) are indi¤erent between (S; x) and (T; y) : Thus, (S; x) beats (T; y) at R
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if the number of agents strictly preferring (S; x) to (T; y) is larger than the number of agents

strictly preferring (T; y) to (S; x) : In order to ensure that the chosen alternative satis�es

internal stability at R we only consider alternatives (S; x) satisfying internal stability at R

(namely, for all i 2 S; (S; x)Pi[?]i). When several Condorcet winners exist we apply the
same tie-breaking rule � as in approval voting.

We say that a pro�le R 2 R is resolute if there is an alternative (S; x) 2 A such that
(S; x) beats (T; y) for all (T; y) 6= (S; x) : Thus, the Condorcet winner selects (S; x) at R:
Let fC;�(R) denote the Condorcet winner (if any) at R: If pro�le R is resolute then, fC;�(R)

is independent of � and
��fC;�(R)�� = 1: Proposition 2 states that the Condorcet winner at

resolute pro�les satis�es the same properties as approval voting, at such pro�les.

Proposition 2 Let R be a resolute pro�le. Then, fC;�(R) satis�es internal stability,

consistency, e¢ ciency, anonymity, neutrality, and participation at R.

Proof of Proposition 2 Fix a resolute pro�le R and set fC;� (R) = (S; x) : We show

that fC;�(R) satis�es the properties at R.

� Internal stability. By de�nition, fC;�(R) satis�es internal stability at R.

� Consistency. We prove that fC;�
�
RjS
�
= (S; x) by showing that at RjS; (S; x) beats

(T; y) for all (T; y) 6= (S; x) with T � S: Let (T; y) be an alternative with the above
properties. Since (S; x) beats (T; y) at R; the number of agents in N preferring (S; x)

to (T; y) is larger than the number of agents inN preferring (T; y) to (S; x) :Moreover,

each agent in NnS is indi¤erent between (S; x) and (T; y) : Thus the number of agents
in S preferring (S; x) to (T; y) (or (T; y) to (S; x)) coincides with the number of agents

in N preferring (S; x) to (T; y) (or (T; y) to (S; x)): Hence, (S; x) beats (T; y) at RjS:

� E¢ ciency. Suppose otherwise; namely, there exists (T; y) such that (T; y)Ri (S; x) for
all i 2 N and (S; x) 6= (T; y) : Let i 2 S: Since (S; x) satis�es internal stability; (S; x)Pi [?]i :
Hence, i 2 T and (T; y)Pi (S; x). Each agent in NnT is indi¤erent between (S; x) and
(T; y) : Thus (T; y) beats (S; x) ; which is a contradiction.

� Anonymity. Observe that (�(S); x) beats (�(T ); y) at R�; for each (T; y) 6= (S; x) :

Hence, fC;� (R�) = (�(S); x) ; which means that fC;� satis�es anonymity at pro�le R:

� Neutrality. Observe that (S; �x) beats (T; �y) ; at R�; for each (T; y) 6= (S; x) : Hence,
fC;� (R�) = (S; �x) ; which means that fC;� satis�es neutrality at R:
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� Participation. It holds because we already proved in the proof of Proposition 2 that
if a rule satis�es internal stability, then it also satis�es participation. �

Nevertheless, for pro�les R that are not resolute the Condorcet winner fC;�(R), even

when it is unique, may not satisfy consistency. To see that, consider the following example.

Example 4 Let N = f1; 2; 3; 4; 5g ; X = fy1; y2g ; and let � be any monotonic order
satisfying f1g � f2g � f3g � f4g. In addition, take any pro�le R from all those satisfying the
following properties, where the �rst column indicates the rank of each of the �ve preference

relations.

R1 R2 R3 R4 R5

First (Nn f5g ; y1) (Nn f5g ; y1) (Nn f5g ; y2) (Nn f5g ; y2) (N; y1)

Second (Nn f5g ; y2) (Nn f5g ; y2) (N; y1) (N; y1) [?]5
Third (N; y1) (N; y1) (Nn f5g ; y1) (Nn f5g ; y1)
Fourth [?]1 [?]2 [?]3 [?]4

:

The only internally stable alternatives are (Nn f5g ; y1) ; (Nn f5g ; y2) ; and (N; y1) : Notice
that, at R; (Nn f5g ; y1) is tied with (Nn f5g ; y2) ; (Nn f5g ; y2) beats (N; y1) and (N; y1)
beats (Nn f5g ; y1) : Since there exists a unique Condorcet winner, (Nn f5g ; y2) ; it must be
the case that fC;� (R) = (Nn f5g ; y2) : The subpro�le RjNnf5g is given by

RjNnf5g1 RjNnf5g2 RjNnf5g3 RjNnf5g4
First (Nn f5g ; y1) (Nn f5g ; y1) (Nn f5g ; y2) (Nn f5g ; y2)
Second (Nn f5g ; y2) (Nn f5g ; y2) (Nn f5g ; y1) (Nn f5g ; y1)
Third [?]1 [?]2 [?]3 [?]4

:

At RjNnf5g, (Nn f5g ; y1) is tied with (Nn f5g ; y2) : Thus, applying the tie-breaking rule �,
and since agent 1 prefers (Nn f5g ; y1) to (Nn f5g ; y2) ; we have that fC;� (R) = (Nn f5g ; y1) ;
which means that fC;� does not satisfy consistency. �
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Appendix: The proof of Theorem 1

Theorem 1 Assume jXj � 3: A rule f : R ! A is strategy-proof, unanimous and non-

bossy if and only if f is a serial dictator rule for some permutation � 2 � and alternative
x 2 X:

We start by presenting an additional notion, that will be used in the sequel. Given a

rule f : R! A; an agent i 2 N and a pro�le R 2 R the option set of agent i at R; denoted

by o(i; R), is the set of alternatives that may be chosen by f when the other agents declare

the subpro�le R�i; namely,

o (i; R) = f(S; x) 2 A j (S; x) = f (R0i; R�i) for some R0i 2 Rig :

Notice that the option set of agent i at R does not depend on the preference Ri: We use

the full pro�le R just for notational convenience.

We proceed by presenting some lemmata that will be used in the proof of Theorem 1.

Lemma 1 Let f : R ! A be a strategy-proof, unanimous and nonbossy rule. Then, the

following hold.

(1) f satis�es monotonicity.

(2) f satis�es e¢ ciency.

(3) For all R 2 R and i 2 N; f (R) = C (o (i; R) ; Ri) :

Proof of Lemma 1 Assume that f : R! A is strategy-proof, unanimous and nonbossy.

We prove the three statements.

(1) Suppose R 2 R, i 2 N; and R0i 2 Ri are such that L (f (R) ; Ri) � L (f (R) ; R0i)

and f (R) 6= f (R0i; R�i) : Three cases are possible:

1. f (R)Pif (R0i; R�i). Since L (f (R) ; Ri) � L (f (R) ; R0i) ; f (R
0
i; R�i) 2 L (f (R) ; R0i)

and hence f (R)P 0if (R
0
i; R�i) : Thus, imanipulates f at pro�le (R

0
i; R�i) via Ri; which

contradicts strategy-proofness of f:

2. f (R0i; R�i)Pif (R) : This contradicts strategy-proofness of f since i manipulates f at

pro�le R via R0i:

3. f (R0i; R�i) Iif (R) : Then, by (P.2), i =2 f (R0i; R�i) [ f (R) : By nonbossiness of f;
f (R0i; R�i) = f (R) which is a contradiction.
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(2) Suppose f is not e¢ cient. Namely, there exist R 2 R and (T; y) 2 A such that

(T; y)Rif (R) for all i 2 N and (T; y)Pjf (R) for some j 2 N: Let R0 2 R be the pro�le such
that for each i 2 N; � (R0i) = f(T 0; y0) 2 A j (T 0; y0) Ii (T; y)g and orders the rest of alterna-
tives as Ri does. Consider the pro�le (R01; R�1) 2 R and suppose that f (R01; R�1) 6= f (R) :
If f (R01; R�1) I1f (R) then 1 =2 f1 (R

0
1; R�1) [ f1 (R) but this contradicts nonbossiness

of f: If f (R01; R�1)P1f (R) then, f is not strategy-proof. If f (R)P1f (R01; R�1) then

f (R)P 01f (R
0
1; R�1) ; which means that 1 manipulates f at (R

0
1; R�1) via R1: Repeating

this argument sequentially for agents i = 2; :::; n we obtain that f (R0) = f (R). But this

contradicts unanimity of f because (T; y) 2
T
i2N

� (Ri) :

(3) Let R 2 R and i 2 N be arbitrary and consider (S; x) 2 C (o (i; R) ; Ri) : Then,
(S; x)Rif (R) : Assume f (R) 6= (S; x) : Two cases are possible:

1. i 2 S: Then, (S; x)Pif (R) : Since (S; x) 2 o (i; R) ; (S; x) = f (R0i; R�i) for some

R0i 2 Ri; which means that i manipulates f at pro�le R via R0i: A contradiction.

2. i =2 S: By nonbossiness, i 2 fN (R) and hence, (S; x)Pif (R) : Now, we obtain a

contradiction with strategy-proofness of f by proceeding in a similar way as we did

in the previous case. �

For the next step, it will be useful to consider the set F of all complete, transitive

and antisymmetric binary relations over X: Namely, F can be seen as the set of all strict

preferences over X: Now, for each strict preference � over X; each N� � N; and each

agent i 2 N we associate a preference over 2N �X (namely, an element of Ri) by means

of a mapping 'N
�;i : F ! Ri, where for each �2 F we select a particular preference

'N
�;i (�) 2 Ri, denoted by R'N�;i(�); among those satisfying the following features.

� If i 2 N�; consider several cases:

� If i 2 S \ T � N� then (S; x)P'N�;i(�) (T; y) if and only if x � y:

� If i 2 T � S � N� then (S; x)P'N�;i(�) (T; x).

� If i 2 S � N� then (S; x)P'N�;i(�) (?; y) for all x; y 2 X:

� If i 2 S and S \ (NnN�) 6= ? then (?; x)P'N�;i(�) (S; y) for all x; y 2 X:

� If i =2 N�; consider only the case i 2 S: Then, (?; x)P'N�;i(�) (S; y) for all x; y 2 X:3

3Even R'N�;i(�) could not depend on �; for simplicity we maintain the notation R'N�;i(�).
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We should note that there are many preferences in Ri satisfying the above conditions.

We just select one of them, and call it 'N
�;i (�).

Fix N� � N and de�ne a social choice function g : FN� ! X as follows. For each

subpro�le (�i)i2N� 2 FN�
of preferences over X set

g((�i)i2N�) = fX((R'N�;i(�i))i2N):

Lemma 2 Let f : R ! A be a strategy-proof, unanimous and nonbossy rule. Then, the

social choice function g is dictatorial ; i.e., there exists j 2 N� such that for all (�i)i2N� ;

g((�i)i2N�) = �(�j) where �(�j) �j y for all y 2 Xnf� (�j)g:

Proof of Lemma 2 Since g is de�ned on the universal domain of strict preference pro�les

onX; the Gibbard-Satterthwaite Theorem says that if g is onto (for each x 2 X; there exists
(�i)i2N� such that g((�i)i2N�) = x) and strategy-proof then, g is dictatorial.

We �rst prove that g is onto. Let x 2 X and (�i)i2N� be such that for each i 2 N�;

�(�i) = x: By de�nition of R'N�;i(�i); �(R'N�;i(�i)) = (N�; x) if i 2 N� and (N�; x) 2
�
�
R'N�;i(�i)

�
if i =2 N�: Since f satis�es unanimity and

T
i2N

�
�
R'N�;i(�i)

�
= (N�; x), we

have that f
��
R'N�;i(�i)

�
i2N

�
= (N�; x). Thus, g

�
(�i)i2N�

�
= fX

��
R'N�;i(�i)

�
i2N

�
= x:

We now prove that g is strategy-proof. Suppose otherwise. Then, there exist (�i)i2N� ;

j 2 N� and�0j such that g(�0j;��j) �j g(�j;��j): By de�nition of g; fX
��
R'N�;i(�i)

�
i2N

�
=

g(�j;��j) and fX
�
R'N�;j(�0j);

�
R'N�;i(�i)

�
i6=j

�
= g(�0j;��j): By de�nition of R'N�;i(�i) we

know that for each i 2 N�; each �2 F ; each x 2 X; and each S � N; S 6= N�; we have

that (N�; x)P'N�;i(�) (S; x). Besides, for each i 2 NnN�; each�2 F ; each x 2 X; and each
S � N with i 2 S we have that (N�; x)P'N�;i(�) (S; x) : Since f is e¢ cient,

f((R'N�;i(�i))i2N) = (N�; g(�j;��j)) and

f(R'N�;j(�0j); (R'N
�;i(�i))i6=j) =

�
N�; g(�0j;��j)

�
:

By de�nition of 'N
�;j(�j),�

N�; g(�0j;��j)
�
P'N�;j(�j) (N

�; g (�j;��j)) ;

which contradicts that f is strategy -proof. �

Fix Ri 2 Ri and (S; x) 2 A: Denote by (S;x)Ri the preference over A obtained from

Ri by placing (S; x) and all its indi¤erent alternatives (if any) at the bottom of the or-

dering. Formally,
(S;x)
Ri is de�ned so that (T; y)(S;x)Ri(S; x); for every (T; y) 2 A and for
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every (T; y); (T 0; y0) 2 An f(S; x)g, (T; y)
(S;x)
Ri(T

0; y0) if and only if (T; y)Ri(T 0; y0): Simi-

larly,
(S;x)
Ri denotes the preference over A obtained from Ri by placing (S; x) and all its

indi¤erent alternatives (if any) at the top of the ordering. Formally,
(S;x)
Ri is de�ned so

that (S; x)
(S;x)
Ri(T; y); for every (T; y) 2 A and for every (T; y); (T 0; y0) 2 An f(S; x)g,

(T; y)
(S;x)
Ri(T

0; y0) if and only if (T; y)Ri(T 0; y0):

Lemma 3 Let f : R ! A be a strategy-proof, unanimous and nonbossy rule and let

R 2 R and i; j 2 S � N be such that i 6= j; f(R) = (S; x) and jo (i; R)j � 3: Then

jo (j; R)j = 1:

Proof of Lemma 3 Suppose jo (j; R)j � 2 holds. This means that we can �nd (T; y) 2
o (i; R) n f(S; x)g and (U; z) 2 o (j; R) n f(S; x)g such that (T; y) 6= (U; z): Consider any

preference R0i 2 R; where

R0i =

(
(U;z)
Ri if (S; x)Pi(U; z)

(U;z)
Ri if (U; z)Pi(S; x):

Notice that (U; z)Ii(S; x) does not hold since i 2 S: Besides, de�ne R0j 2 R, where

R0j =

(
(T;y)

Rj if (S; x)Pj(T; y)
(T;y)

Rj if (T; y)Pj(S; x):

Again, (S; x)Ij(T; y) does not hold since j 2 S: By monotonicity, f(R) = f
�
R0j; R�j

�
=

f (R0i; R�i) = f
�
R0i; R

0
j; R�i;j

�
= (S; x):

Claim 1: o (i; R) = o(i; (R0i; R
0
j; R�i;j)) and o (j; R) = o(j; (R

0
i; R

0
j; R�i;j)):

Proof of Claim 1: We only prove that o (i; R) = o(i; (R0i; R
0
j:R�i;j)) holds (the proof

of the case o (j; R) = o(j; (R0i; R
0
j; R�i;j)) is similar). Suppose otherwise. Assume that

o (i; R) no(i; (R0i; R0j; R�i;j)) 6= ? (the proof of the other case o(i; (R0i; R0j; R�i;j))no (i; R) 6= ?
is similar and we omit it). Take any alternative (eS; ex) 2 o (i; R) no(i; (R0i; R0j; R�i;j)):
Since (eS; ex) 2 �(

(eS;ex)
Ri); (eS; ex) 2 o (i; R) = o(i; (

(eS;ex)
Ri; R�i)) and, by (3) of Lemma

1, f(
(eS;ex)

Ri; R�i) = C(o(i; (
(eS;ex)

Ri; R�i));
(eS;ex)

Ri); we have that f(
(eS;ex)

Ri; R�i) = (eS; ex):
Since (eS; ex) =2 o(i; (R0i; R

0
j; R�i;j)); we have that f(

(eS;ex)
Ri; R

0
j; R�i;j) 6= (eS; ex): Hence, it

holds that L(f(
(eS;ex)

Ri; R
0
j; R�i;j);

(eS;ex)
Ri) � L(f(

(eS;ex)
Ri; R

0
j; R�i;j); Ri). Since f is monotone,

f(
(eS;ex)

Ri; R
0
j; R�i;j) = f(Ri; R

0
j; R�ij) = (S; x): We now distinguish between two cases.

Case 1: (eS; ex)P 0j(S; x): Then,
f(

(eS;ex)
Ri; Rj; R�i;j) = (eS; ex)P 0j(S; x) = f((eS;ex)Ri; R0j; R�i;j):
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Thus, j manipulates f at pro�le (
(eS;ex)

Ri; R
0
j; R�i;j) via Rj; which is a contradiction.

Case 2: (S; x)P 0j(eS; ex): By de�nition of R0j; (S; x)Pj(eS; ex): Then,
f(

(eS;ex)
Ri; R

0
j; R�i;j) = (S; x)Pj(eS; ex) = f((eS;ex)Ri; Rj; R�i;j):

Thus, j manipulates f at pro�le (
(eS;ex)

Ri; Rj; R�i;j) via R0j; which is also a contradiction.

Since (eS; ex)I 0j(S; x) is not possible because i 2 S: we have �nished the proof of Claim 1. �
We now de�ne two new preferences ~Ri; ~Rj, where

~Ri =

(
(T;y)

((U;z)Ri) if (S; x)Pi(U; z)
(U;z)
(
(T;y)

Ri) if (U; z)Pi(S; x)

and

~Rj =

(
(U;z)
(
(T;y)

Rj) if (S; x)Pj(T; y)
(T;y)

(
(U;z)
Rj) if (T; y)Pj(S; x):

Claim 2: The following two equalities hold.

(i) f( ~Ri; R0j; R�ij) = (T; y):

(ii) f(R0i; ~Rj; R�ij) = (U; z):

Proof of Claim 2:

(i) Since (T; y) 2 o (i; R), by Claim 1, (T; y) 2 o(i; (R0i; R0j; R�ij)): If (S; x)Pi(U; z) we
have that C(o(i; (R0i; R

0
j; R�ij)); ~Ri) = (T; y). Since f is strategy-proof, f( ~Ri; R0j; R�ij) =

(T; y): If (U; z)Pi(S; x) then, (U; z) 2 �( ~Ri): Assume �rst that (U; z) 2 o(i; (R0i; R0j; R�ij).
Since f is strategy-proof, f( ~Ri; R0j; R�ij) = (U; z): Since f(R

0
i; R

0
j; R�ij) = (S; x), i manipu-

lates f at pro�le (R0i; R
0
j; R�ij) via ~Ri; a contradiction. Hence, (U; z) =2 o(i; (R0i; R0j; R�ij)):

Since (T; y) 2 o(i; (R0i; R0j; R�ij)) and f is strategy-proof, f( ~Ri; R0j; R�ij) = (T; y):
(ii) We know that (U; z) 2 o (j; R) : By Claim 1, (U; z) 2 o(j; (R0i; R0j; R�ij)): If (S; x)Pj(T; y)

we have that (U; z) 2 C(o(j; (R0i; R0j; R�ij)); ~Rj). Since f is strategy-proof, f
�
R0i;

~Rj; R�ij

�
=

(U; z): If (T; y)Pj(S; x) then, (T; y) 2 �( ~Rj): Assume �rst that (T; y) 2 o(j; (R0i; R0j; R�ij)):
Since f is strategy-proof, f(R0i; ~Rj; R�ij) = (T; y): Since f(R

0
i; R

0
j; R�ij) = (S; x), j manipu-

lates f at pro�le (R0i; R
0
j; R�ij) via ~Rj; a contradiction. Hence, (T; y) =2 o(j; (R0i; R0j; R�ij)):

Since (U; z) 2 o(i; (R0i; R0j; R�ij)); and f is strategy-proof, f(R0i; ~Rj; R�ij) = (U; z): And this
�nishes with the proof of Claim 2. �
We now proceed with the proof of Lemma 3 by considering four di¤erent cases:

(1) Assume (S; x)Pi(U; z): Since f(R0i; ~Rj; R�ij) = (U; z) by (ii) in Claim 2, we have that

U
�
f
�
R0i;

~Rj; R�ij

�
; R0i

�
= A. Hence, U(f(R0i; ~Rj; R�ij); ~Ri) � U

�
f
�
R0i;

~Rj; R�ij

�
; R0i

�
:

23



Since f is monotonic,

f( ~Ri; ~Rj; R�ij) = f(R
0
i;
~Rj; R�ij) = (U; z):

(2) Assume (U; z)Pi(S; x): Since f(R0i; ~Rj; R�ij) = (U; z) by (ii) in Claim 2, we have that

L(f(R0i; ~Rj; R�ij); ~Ri) = A. Hence, L(f(R
0
i; ~Rj; R�ij); R

0
i) � L(f(R0i; ~Rj; R�ij); ~Ri). Since f

is monotonic,

f( ~Ri; ~Rj; R�ij) = f(R
0
i;
~Rj; R�ij) = (U; z):

(3) Assume (S; x)Pj(T; y): Since f( ~Ri; R0j; R�ij) = (T; y) by (i) in Claim 2, we have that

U(f( ~Ri; R
0
j; R�ij); R

0
j) = A. Hence, U(f( ~Ri; R

0
j; R�ij);

~Rj) � U(f( ~Ri; R0j; R�ij); R0j): Since
f is monotonic,

f( ~Ri; ~Rj; R�ij) = f( ~Ri; R
0
j; R�ij) = (T; y):

(4) Assume (T; y)Pj(S; x): Since f( ~Ri; R0j; R�ij) = (T; y) by (i) in Claim 2, we have that

L(f( ~Ri; R
0
j; R�ij);

~Rj) = A. Hence, L(f( ~Ri; R0j; R�ij); R
0
j) � L(f( ~Ri; R0j; R�ij); ~Rj): Since f

is monotonic,

f( ~Ri; ~Rj; R�ij) = f( ~Ri; R
0
j; R�ij) = (T; y):

Thus, in each of the four possible cases (S; x)Pi(U; z) and (S; x)Pj(T; y); (S; x)Pi(U; z)

and (T; y)Pj(S; x); (U; z)Pi(S; x) and (S; x)Pj(T; y), and (U; z)Pi(S; x) and (T; y)Pj(S; x);

we have that f( ~Ri; ~Rj; R�ij) = (U; z) and f( ~Ri; ~Rj; R�ij) = (T; y); which is a contradiction.

�

Given N� � N we know, by Lemma 2, that g is dictatorial in the domain FN�
: Let

d (N�) 2 N� be the dictator.

Lemma 4 Let R 2 R be a pro�le such that �(Rd(N�)) = (N�; x) for some x 2 X and

(N�; x) 2
T

j2NnN�
� (Rj) : Then, f (R) = (N�; x) :

Proof of Lemma 4 The proof has four steps.

Step 1: Agent d (N�) is a dictator in the subdomain of R induced by the mapping

': Denote it by R' = fR 2 R j R =
�
R'N�;i(�i)

�
i2N for some (�i)i2N� 2 FN�g: Let

R 2 R'. By Lemma 2, fX (R) = g
�
(�i)i2N�

�
= x: By e¢ ciency of f and the de�nition of�

R'N�;i(�i)
�
i2N ; fN (R) = N

�:

Step 2. Let Rd(N�) be any preference in the general domain R such that �
�
Rd(N�)

�
=

(N�; x) : Hence, for each subpro�le R�d(N�) belonging to the subdomain R'
�d(N�), f (R) =

(N�; x) follows immediately as the consequence that f is strategy-proof.
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Step 3. Let R 2 R be such that Rd(N�) is any preference in R satisfying �(Rd(N�)) =

(N�; x) ; there exists i 2 N�nfd(N�)g such that Ri is any preference in the general do-
main Ri, for all j 2 Nn fd (N�) ; ig, Rj is any preference in the subdomain R'

j : Then,

f (R) = (N�; x) : Consider any preference R0i in the subdomain R
'
i : By Step 2, for all

y 2 X; (N�; y) 2 o (d (N�) ; (R0i; R�i)) : Since jo (d (N�) ; (R0i; R�i))j � 3, by Lemma 3,

jo (i; (R0i; R�i))j = 1 holds. Since (N�; x) = f (R) and o (i; (R0i; R�i; )) = o (i; R) ; (N
�; x) 2

o (i; (R0i; R�i)) and hence, o (i; (R
0
i; R�i)) = (N

�; x) : Thus, f (R) = (N�; x) :

Step 4. Applying successively the arguments of Step 3 we obtain that for all R 2 R
satisfying (i) Rd(N�) is any preference in R satisfying �(Rd(N�)) = (N�; x) ; (ii) for all

i 2 N�nfd(N�)g, Ri is any preference in the general domain R, and (iii) for all j 2 NnN�,

Rj is any preference in the subdomain R'
j ; we have that f (R) = (N

�; x) : �

Lemma 5 Assume N 0 ( N 00 � N are such that d (N 00) 2 N 0. Then, d (N 0) = d (N 00) :

Proof of Lemma 5 Suppose not. Let x 2 X and consider the pro�le R 2 R where

(i) Rd(N 00) satis�es �
�
Rd(N 00)

�
= (N 00; x), (ii) Rd(N 0) satis�es �

�
Rd(N 0)

�
= (N 0; x) and (iii)

for each i 2 Nn fd (N 0) ; d (N 00)g, Ri is any preference in the subdomain R'
i for N

� =

fd (N 0) ; d (N 00)g : By Lemma 4, with N� = N 00, f (R) = (N 00; x) : By Lemma 4 again, with

N� = N 0, f (R) = (N 0; x) ; which is a contradiction. �

Proof of Theorem 1 Let � 2 � and x 2 X be given. It is easy to show that the

serial dictator rule f�;x is strategy-proof, unanimous and nonbossy. To prove the other

implication, assume f : R ! A is a strategy-proof, unanimous and nonbossy rule. We

will identify from f a permutation of agents � 2 � and an alternative x 2 X such that

f = f�;x: We �rst de�ne � recursively by setting �1 = d (N) and, for all i = 2; :::; n;

�i = d (Nn f�1; :::; �i�1g) : To identify x 2 X; let R 2 R be such that for each i 2 N;
� (Ri) = [?]i : Thus, \

i2N
� (Ri) = f(?; x0) 2 A j x0 2 Xg :

By unanimity, f (R) 2
T
i2N

� (Ri) : Set x = fX (R) :We now prove that f = f�;x: Let R 2 R

be an arbitrary pro�le. Two cases are possible:

Case 1. j� (R�1)j = 1: Thus, � (R�1) = (S1; x1) and �1 2 S1: By de�nition, f�;x (R) =
(S1; x1) : For each i 2 NnS1, let R0i be any preference in the subdomain R

'
i induced by

' when N� = S1: Since �1 2 S1; by Lemmata 4 and 5, f(RS1 ; R
0
�S1) = (S1; x1). Let

i 2 NnS1; By Lemma 4, (S1 [ fig ; y) 2 o(�1; (RS1[fig; R0�(S1[fig))) for all y 2 X: By Lemma
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3,
���o(i; (RS1[fig; R0�(S1[fig)))��� = 1: Since o(i; (RS1[fig; R

0
�(S1[fig))) = o(i; (RS1 ; R

0
�S1)); we

deduce that
��o(i; (RS1 ; R0�S1))�� = 1. Since f(RS1 ; R

0
�S1) = (S1; x1) ; o(i; (RS1 ; R

0
�S1)) =

(S1; x1). Hence, f(RS1[fig; R
0
�(S1[fig)) = (S1; x1) : Similarly, we can also prove easily that

f(RS1[fi;jg; R
0
�(S1[fi;jg)) = (S1; x1) holds when j 2 Nn (S1 [ fig) : Repeating this process

for the rest of the agents in NnS1, we obtain that f(R) = (S1; x1). Hence, f�;x(R) = f(R):

Case 2. j� (R�1)j > 1: Thus, � (R�1) = [?]�1 : We consider two subcases separately.

Case 2.1. jC (� (R�1) ; R�2)j = 1: Thus, C (� (R�1) ; R�2) = (S2; x2) and �2 2 S2: It is
immediate to see that f�;x (R) = (S2; x2) : We now prove that f (R) = (S2; x2) : For each

i 2 NnS1; let R0i be any preference in the subdomain R
'
i induced by ' when N

� = S2: Take

R0�1 = R�1 (remember that R�1 belongs to the subdomain R'
�i
): Using arguments similar

to those used in Case 1, we can show that f (R) = (S2; x2) :

Case 2.2. jC (� (R�1) ; R�2)j > 1: Thus,

C (� (R�1) ; R�2) = f(S; y) 2 A j �1 =2 S; �2 =2 S and y 2 Xg :

We would consider again two subcases separately depending on jC (C (� (R�1) ; R�2) ; R�3)j :
Continuing with this procedure, at the end we would reach agent n and we would need to

consider two subcases separately depending on jC (An; R�n)j ; where

An = f(fng ; y) 2 A j y 2 Xg [ f(?; y) 2 A j y 2 Xg :

If jC (An; R�n)j = 1 then C (An; R�n) = (fng ; xn) : Thus, f�;x (R) = (fng ; xn) : Using
arguments similar to those used above we can show that f (R) = (fng ; xn) :
If jC (An; R�n)j > 1 then C (An; R�n) = f(?; y) 2 A j y 2 Xg : Then, f�;x (R) = (?; x) :

By de�nition of x; f (R) = (?; x) : �

The three properties used in the characterization of Theorem 1 are independent.

The Approval voting rule fAV;� de�ned in Section 5 satis�es nonbossiness and unanimity

but fails strategy-proofness.

Any constant rule satis�es strategy-proofness and nonbossiness but fails unanimity.

Let x; y 2 X with x 6= y: We de�ne

f (R) =

(
f�;x if � (R�1) = [?]i and (1; x)P1 (1; y)
f�;y otherwise:

It is easy to see that f satis�es strategy-proofness and unanimity but fails nonbossiness.

26


